Increased catalase expression improves muscle function in mdx mice.

نویسنده

  • Joshua T Selsby
چکیده

It has been well established that oxidative stress contributes to pathology associated with Duchenne muscular dystrophy (DMD). I hypothesized that overexpression of the antioxidant enzyme catalase would improve muscle function in the mdx mouse, the mouse model of DMD. To test this hypothesis, neonatal mdx mice were injected with a recombinant adeno-associated virus driving the catalase transgene. Animals were killed 4 or 6 weeks or 6 months following injection. Muscle function was generally improved by catalase overexpression. Four weeks following injection, extensor digitorum longus specific tension was improved twofold, while soleus was similar between groups. Resistance to contraction-induced injury was similar between groups; however, resistance to fatigue was increased 25% in catalase-treated soleus compared with control muscle. Six weeks following injection, extensor digitorum longus specific tension was increased 15%, while soleus specific tension was similar between treated and untreated limbs. Catalase overexpression reduced contraction-induced injury by 30-45% and fatigue by 20% compared with control limbs. Six months following injection, diaphragm specific tension was similar between groups, but resistance to contraction-induced injury was improved by 35% and fatigue by 25%. Taken together, these data indicate that catalase can improve a subset of parameters of muscle function in dystrophin-deficient skeletal muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD

Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold level...

متن کامل

Enhanced autophagy as a potential mechanism for the improved physiological function by simvastatin in muscular dystrophy

Autophagy has recently emerged as an important cellular process for the maintenance of skeletal muscle health and function. Excessive autophagy can trigger muscle catabolism, leading to atrophy. In contrast, reduced autophagic flux is a characteristic of several muscle diseases, including Duchenne muscular dystrophy, the most common and severe inherited muscle disorder. Recent evidence demonstr...

متن کامل

Irisin treatment improves healing of dystrophic skeletal muscle

Background Irisin is an exercise induced myokine that is shown to promote browning of adipose tissue and hence, increase energy expenditure. Furthermore, our unpublished results indicate that Irisin improves myogenic differentiation and induces skeletal muscle hypertrophy. Since exercise induced skeletal muscle hypertrophy improves muscle strength, we wanted to investigate if ectopic injection ...

متن کامل

Nifedipine Treatment Reduces Resting Calcium Concentration, Oxidative and Apoptotic Gene Expression, and Improves Muscle Function in Dystrophic mdx Mice

Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimu...

متن کامل

Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice

Duchenne muscular dystrophy is an X-linked degenerative disorder of muscle caused by the absence of the protein dystrophin. A major consequence of muscular dystrophy is that the normal regenerative capacity of skeletal muscle cannot compensate for increased susceptibility to damage, leading to repetitive cycles of degeneration-regeneration and ultimately resulting in the replacement of muscle f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental physiology

دوره 96 2  شماره 

صفحات  -

تاریخ انتشار 2011